existing homes

What's The Process For Working With An Architect To Design My Home?

What do I get for my money? Are you worried about working with an architect but have no idea what to expect? Well here is a detailed layout of how a typical project can be structured when working with Mottram Architecture. What do you get for your money? Value! Sure, I’m trying to sell you something that doesn’t exist and below is a list of the meetings and items I will provide to you during the course of a project. But what am I really providing?You might ask yourself:Do I need to hire an architect?Nope! Homes are built every day without an architect. Building a home is a complex problem and we (as architects) thrive on those challenges. Isn’t your dream home a space that suits you exactly? Do you live in a home that you have been trying to reconfigure for your family's specific wants and desires? These are custom solutions that we can help you solve. Hiring an architect is about managing your risk through a complex construction project, and increasing the quality of your experience during the process and for years after as you live in your home.A project typically takes a natural progression that almost all architects follow. We work in a similar manor and this is the breakdown of how we work. Every client is different, however, and we give you the opportunity to take advantage of as many phases as you’d like. We also realize that this process is based on the average client and we may spend more time with you in different phases. Every client is unique and we adapt our proposals to meet your needs.Phase I is an existing conditions survey, or it's schematic design if you are building new. What happens in the schematic design phase?We meet to discuss your goals and establish the project requirements including the Project Scope, budget, space requirements and aesthetic preferences.Based on the requirements established at the first meeting, we sketch out a design comprised of up to three proposed solutions for the project. Solutions usually include floor plans and exterior building elevations to illustrate the home.After discussion of the first three design concepts, we have an additional meeting to present and discuss the combinations of all of the design solutions into one solution moving forward. Usually we provide two revisions to the selected schematic design solution.  More than two revisions during the schematic design phase could be considered additional services and can change the overall cost of the design proposal. Again, this process is based on your average customer.At this phase we provide a “design” budget using square footage cost estimation and the schematic design solution will be signed off on prior to moving to the next phase of design.Phase II, What happens during the design development phase?With your approval of the schematic design we get a lot more detailed! We will develop the floor plans, exterior elevations and prepare additional details to fix and describe the character of the project.You will now need to start thinking about and seleting hardware, finish plumbing fixtures, appliances, kitchen cabinets, tile, stone and decorative lighting fixtures. Depending on the project we typically prepare interior elevations as necessary to describe the locations and arrangements of fixtures and finishes that you have selected.As a rule of thumb, we usually meet once at the beginning of design development and once during the process. This translates to 2 design revisions prior to heading into construction documents where we tell the builder how it all goes together.Phase III: What happens during the construction document phase?Based on the approved design development drawings, we prepare construction documents consisting of drawings and specifications that will describe the scope of work and be suitable for filing with the building department and for construction by a qualified contractor.This is the part where we, as architects, spend a lot of time at the drawing board putting together all the details. We meet less frequently, and what is provided is a substantial set of construction documents that can include, but not be limited to:

    • Architectural Floor Plans delineating the existing construction, demolition, new construction, and the cross referencing of details and sections on subsequent drawings.
    • Power and Data Plans showing electrical receptacles, telephone, cable and internet locations.
    • Finish plumbing fixture locations.
    • Reflected Ceiling Plans indicating placement of ceiling-mounted, wall-mounted and recessed lighting fixtures, with associated switching arrangements, and locations for required smoke and carbon dioxide detectors.
    • Building Elevations at each exterior facade showing the existing residence with the proposed new construction including notes indicating finishes, materials and any special conditions.
    • Details, Sections, Schedules and Notes communicating, in detail, different aspects of the design relating to construction and/or code requirements. These details are essential in conveying the design concept to the General Contractor, the subcontractors and to the Building Department.

Engineering Note: Basic Architectural Services do not include mechanical, electrical, plumbing, fire suppression, structural or civil engineering. Phase IV: What happens in the pricing and permitting phase:We should qualify that we will help with putting a project out to bid as noted below, however, we find that our clients are more satisfied with the overall construction project when they select a contractor during the design phase and bring them into the process creating a truly integrated design. This almost always saves time and money for the homeowner.Contractor SelectionWe will assist you in interviewing (3) contractors of your choosing or if you need some contractor referrals we know several people in different geographical locations that would be happy to talk with you about your project.We coordinate with the contractor during the design development and construction document phase to reduce design fees and meet the clients scope and budget. We work closely with the Contractor to value engineer a project to meet within the constraints of your scope and budget and revise the design accordingly.Bid CoordinationIf you choose to put the project out to bid we will assist you with assembling, distributing and evaluating the bid package, which includes things like preparing and distributing the Construction Documents to each contractor. Addressing contractors questions and issuing clarifications and/or addenda (as required). Assisting you with the evaluation of the bids, as it needs to be reviewed to be sure each contractor is bidding apples to apples.Building Permit AssistanceWe will assist you in preparing the application for the Building Permit as required by the local zoning code. We will make sure the drawings include all the necessary elements for permit along with any other paperwork you might be required to submit. Fees associated with the Application for Building Permit are the responsibility of the Client.Phase V: What happens during construction administration?Based on the signed contract between you and the contractor of your choice, we can provide a number of services during construction!We prefer to start construction off with a project coordination meetings just to be sure the client and the contractor are on the same page! This helps to provide clarification of construction documents.If you need us to, we will visit the project site at regular intervals to observe the progress of the work and answer any questions the contractor might have. When you are dealing with renovation projects you should know that something always comes up during construction.On larger projects we review subcontractors’ submittals such as shop drawings, product data and/or samples. Sometimes that means we might prepare supplemental and clarification drawings during construction to meet the requirements of your project.At substantial completion, the Architect shall prepare a “punch list” of work to be corrected and review the corrective work to completion. It's always that last 5%.We give our clients a proposal after our first meeting that details these steps with our understanding of their scope of work. At any time a client can choose to move forward to the next phase, or only complete the current phase.  We like to think we make architectural services available to everyone. We think we add value to every project, so we'd like you to give us the opportunity to prove our worth!~ Emily Mottram, Mottram Architecture

Your House is a System

BlogHouseAsSystemI think it’s time for me to introduce my readers to one of the most important concepts of building eco friendly homes.  House as a System.What do I mean when I say your house is a system?  It is a combination of inter-dependent parts that make up a whole building.  As an energy professional and an architect, that means, if I chose to change one part, I am affecting other parts of the system.  This may be in a good way, or it may be in a harmful way.  With the emergence of building tight homes, we also need to be aware of what we are trapping inside that previously exited though drafty or leaky areas in the home.  I was going to write “older homes”, but my experience as an energy auditor has taught me that it has little to do with the age of the home.  There are just as many leaky, drafty, inefficient new homes as there are older homes.It is extremely important today to understand the impacts of building more efficient homes.  This rule applies to architects, builders, and energy professionals.  The chemicals found in our building materials can be very harmful to your health.  Many products are made with formaldehyde or high volatile organic compounds (VOC’s).  Maine also has high levels of radon due to the rocky ledge that makes up our soils.  By building tighter homes, we must be sure we are not trapping harmful gases or compounds within the home.Building tighter homes isn’t just about air sealing with caulks and spray foams. Adding dense packed cellulose to your walls increases the insulation value of your home, but it also reduces the air infiltration.  When we reduce the air infiltration we can cause our atmospherically drafting heating appliance to blow exhaust fumes back into the home instead of out through the chimney.  We can trap moisture within the home, propagating mold growth and moisture damage. Many building professionals believe that houses needed to breath and that is simply untrue.   Houses do not need to breath, the occupants do.  And we need to be sure that the air our homeowners are breathing is both healthy and adequate.Houses that breathe draw in outdoor air from anywhere there is a hole or crack in the building structure.  This often times means that air is coming in from your basement.  When you think about the principle that hot air rises, you can imagine the cool air being drawn in from your basement and leaking the heated air out through your attic. Now if you think about your basement, you may be thinking about a dirt floor, all the chemicals you store there, or your heating system.  All that air that is being drawn in through your basement is introducing those chemicals into your living space.   We have a tendency to think of our basements as outside of our living space, but they are very much connected to every other part of your home.  Although the things you store there may be out of sight, out of mind, they are definitely not out of the air you breath.Before the emergence of energy efficient and airtight building, homes were able to dry out due to the air movement through the structure and the lack of insulation in the walls.  The homes would dry during the wet seasons of the spring and fall, however, these same homes would become very difficult and expensive to heat during the winter.  The energy community knew they needed to button up the homes, but at the time, they did not know that they needed to provide mechanical ventilation for healthy indoor air quality and they created several sick buildings.Now we talk about passive house building where there are less then 15 quarter-size gaps, cracks, or holes in a building structure and the sun heats the home virtually eliminating the need for a heating system.  These inter-dependent parts create a very efficient design.  In passive house standards, it extremely important to provide mechanical ventilation to the space. Providing fresh outdoor air to the occupants of the home eliminates harmful byproducts from the construction materials and excess moisture from cooking, breathing, and showering. Because the home itself has very little air infiltration, mechanical ventilation is often provided by a heat recovery ventilator or energy recovery ventilator. This allows the system to provide fresh air directly to the locations of the home that need it, like the bedroom, where you spend most of your time while you are at home.  Providing air directly to the locations where it is needed instead of drawing it in from wherever there are cracks in the foundation allows for the system to perform with precise calculations and reduces any loss associated with providing healthy indoor air quality.The increased levels of insulation from the code minimum help to keep heat within the building envelope.  Large south-facing windows can take advantage of the sun and heat the home through heating thermal mass, often a concrete floor.  All parts of that system have to work precisely together to make the house as efficient as possible.  If a new homeowner came in and decided to throw a carpet over the concrete floor they would reverse the effects of the solar heating system and require a larger heating system to be installed.  Tighter homes often do not have large gas cook stoves with 300 to 600 CFM ventilation hoods because there is simply not enough air infiltration to provide adequate supply to the ventilation system.  Without that adequate air it causes the ventilation system to “suck” on the house and will quickly burn out the motor in the fan.These are just a few examples of how the components of your home work as a system. So as you are building your home and thinking about making something that is more efficient, make sure you consider hiring a professional who can provide you with the information you need to save money, but also provide you with a safe and comfortable home.  It may sound daunting to build an energy efficient home, but the comfort level it can provide you and the energy it can save you is well worth the added considerations during the design or renovation process.

7 Things You Should Never Do When Improving the Efficiency Of Your Home

96Slider

Tighten a home that has moisture issues

Energy efficiency can be directly related to the warm air leaking out of your home.  So most of us understand that air sealing and tightening our homes will make them more energy efficient.  That is correct, but it is extremely important to eliminate moisture problems before we do so.  Moisture trapped within the home creates condensation, structural damage, mold growth, and poor indoor air quality.  Sources of moisture can be dirt basements and crawlspaces, un-sealed concrete slabs or walls, fish tanks, cooking with gas, cooking without lids on pots, shower areas, excessive amounts of plants, greenhouse open to the living space, standing water, bathroom or laundry vents not vented to the exterior, uncovered sump pumps and many other sources.  The best course of action is to eliminate the moisture source before air sealing the home.  If you can’t eliminate the source, encapsulate it.  If you can’t encapsulate it, try to diffuse it.

Replace the windows first

Windows are very costly.  Rarely do windows pay for themselves in energy retrofits before the lifespan of the window is considered over.  Who wants to wait 25, 35, or 45 plus years for their windows to pay for themselves?  The current energy standards only require you to put R- 3.3 windows in your home.  That’s hardly better then the R-2 double hung window that you currently have.  The most cost effective solution for window retrofits is air sealing the window during installation, not the actual window itself.  So before you replace those leaky windows, see if you can remove the trim and air seal around the window.  If you have a broken window, or a window with condensation between the panes of glass that would be an appropriate time to replace the window.  Also, if you have a very old home with weight and chain windows, it might be in your best interest to replace the windows.  The weight and chain cavity of a window allows significant air leakage into the home and cannot be effectively sealed without changing the operation of the window.

Not have a qualified energy professional evaluate your home

Many contractors will tell you that you don’t need to hire an energy professional to evaluate your home.  However, energy professionals are trained in both evaluation and safety.  A good energy auditor will not only evaluate your home but provide diagnostic testing to locate the worst performing sections to tackle those first.  In addition, an energy auditor should be checking your home for air quality issues like back-drafting furnaces, poorly performing ventilation systems, leaky gas lines, and excess toxins and moisture.  They should be able to provide you with a prioritized list of energy improvements, and come back to test the air quality and heating system safety after the work has been completed.  Simply adding more insulation to your attic without addressing potential problems is a waste of your time and money.

Insulate your attic without air sealing first

As I mentioned above, adding extra insulation does not mean that you are adding energy improvements.  Attic spaces tend to have several openings between the living space and the cold attic.  That air movement from the living space into the attic increases heat loss in your home and also transfers warm moist air to the attic.  That warm moist air will often condense on the roof sheathing and cause premature roof failure and mold growth.  Insulation is not meant to retard airflow; it’s meant to reduce conductive heat flow through the ceiling material.  So if your insulation isn’t in full contact with your sheetrock or plaster ceiling it is not an effective thermal barrier.  This can happen due to strapping on a ceiling or insulation that fits poorly within a space.  Air is constantly flowing between the surface of the ceiling and the surface of the insulation taking heat with it.  The areas around penetrations in the ceiling are drawing air, because heat rises, up through those holes with little resistance.  Fiberglass insulation becomes a filter for that air, but does not stop it.  Cellulose insulation can reduce the flow, but also does not stop it.  So the first course of action when adding insulation to your attic is to air seal around all penetrations [pluming, electrical, mechanical, chimney’s, open wall cavities, etc] prior to adding a layer of insulation.  Then be sure that the type of insulation you install will fit fully against the ceiling surface below.

Forget the attic hatch

As little as a 7% void in insulation can cause up to 50% of the heat loss through your attic.  Having an un-insulated attic hatch adjacent to your R-49 attic space can result in a significant amount of heat loss.  Your heating system will work hard to continue to heat that hole in your ceiling.  The attic hatch will be constantly giving heat to the attic and requiring heat to stay warm.  Sometimes there is a fiberglass batt positioned on the top of the attic hatch, but the first time someone goes up through the hatch the batt is moved to the side and rarely replaced.  Even if your attic hatch has insulation on it, the hatch is rarely air sealed allowing a significant amount of heat to enter the attic space around the board or sheetrock that acts as your attic hatch. So, even if you do have a fiberglass batt on top of your attic hatch, if it is not air sealed, that insulation is doing nothing.

Pretend the basement does not exist

Basements are an integral part of a building envelope, and although we like to pretend they do not exist they are some of the leading contributors to energy loss in a home.  Concrete has virtually no R-value, so any section of above grade foundation that you have is continually leaking heat to the exterior of your home.  You may notice that your flowers bloom early in the spring, and the snow melts directly against your foundation sooner then other areas.  Basements also tend to be the place where we store our chemicals, firewood, paints, and install our heating systems.  If you have poorly installed ductwork in your basement you can be transferring all of those indoor air pollutants directly to your living spaces.  Any holes between the basement for plumbing, electrical, and mechanical directly introduce the moisture and toxins from your basement into the rest of your home.  And insulating the basement ceiling isn’t going to stop that airflow, and often times can lead to frozen pipes and performance issues with your heating system.  So before you say you want to do an energy project, but you don’t want to address your basement, remember that you could be creating a new issue that you did not have before.

Ignore the air barrier between the garage and living space

And last, but certainly not least, is ignoring the reasons why new construction codes require you to have a separation between your living space and your garage.  For code purposes, several of the requirements relate to fire hazards.  However, we have also learned in recent years, with the influx of tighter homes, that contaminants in the garage often leads to poor indoor air quality.  Your car continues to give off carbon monoxide for hours after it is turned off.  Similar to your basement, your garage is where you tend to store chemicals and gas for your lawn mower.  For these reasons, it is very important that you have a continuous air barrier between your garage and living space.  This includes attached garages and tuck under garages where the garage is below with a living space is above.Remember, your house is a system.  Every part is directly or indirectly related to some other part.  So hiring an energy professional to help you create a safe, comfortable, and energy efficient home isn’t just important, it’s critical.

72% Of Individuals Polled Were Unaware That Architects Apply For Planning Permission

Sadly, I have neglected my blog over the last couple of weeks as mud season rolled into road construction season here in Maine.  I have, however, kept up with some of the interesting articles that are floating around my inbox.  One that caught my attention stated a number of facts that the average person doesn't know that an Architect does! Architects are notoriously bad business people. How can we run a successful business if the majority of individuals who would hire us have no idea what we do!This topic reminds me of the statement that I make to my students at the beginning of each semester. "I don't know what you don't know!” Quickly followed by: “I don't remember what it was like when I didn’t know, now that I know it.” As an Architect, I guess I get caught up in the excitement of the design of the project, and I forget to explain all the important things that need to happen behind the scenes as a project develops.According to Vitruvius who wrote The Ten Books On Architecture for the emperor Augustus: “The architect should be equipped with knowledge of many branches of study and varied kinds of learning, for it is by his judgment that all work done by the other arts is put to the test.” The foundation for which all architects study asks them to be the linchpin for every project. In simple terms it requires the architect to hold together various elements of a complicated process:  To be involved in every aspect of design and construction because an architect's knowledge base extends to every discipline.I am currently writing a class for the fall semester and I have to put together, in detail, a worksheet of all the information that an architect would be required to figure out during each phase of the design and construction process. It has been an exhausting list including zoning, watershed, ADA compliance, wall detail sheets, sections, schedules and so much more. Maybe you don't need the Architect to hold your hand and pick out paint colors, but are you aware of all the other things you should be asking your architect to do? How about a few ideas to get your mind thinking about how complicated this process is:

  1. Check the zoning, because what happens when you can’t do what you wanted to do on your site?
  2. Check for watershed restrictions, how much extra is it going to cost you to find the right location for the septic on this site you wanted to build on?
  3. Phosphorus plans. Did you even know you might need one of these?
  4. Planning requirements for submission, every town is different and you might need stamped engineering drawings or a site plan with 2’-0” contours.
  5. Help the builder work out any unforeseen issues, because there will always be issues
  6. Coordinate with trades, when you have no data jacks on the first floor of your home and you can’t connect to the internet without a wireless router you’ll wonder why no one said anything. It’s not like you were supposed to know, and the electrician was just doing whatever was necessary for a certificate of occupancy, it's really not their job to ask you how you are going to use your space.
  7. Lighting, because even the most beautiful space can be dark and under utilized if a proper lighting layout hasn’t been established
  8. Check to make sure the building envelop is tight and continuous, the days of energy efficient structures are becoming more and more important.
  9. Verify the electrical is in a usable location, because there are twenty light switches and not one of them turns on a light when you enter the front door.
  10. Heating or cooling is in a usable location, because it was easier to run ductwork right behind where your couch will go, and now it doesn’t heat the space.

I assume it was drummed into my mind as a young architect that our clients don't need to know all the nitty gritty of what we do behind the scenes.  However, it has become abundantly clear, that our profession is marginalizing itself because clients now assume that the builder figures out things that architects should be doing. Whose fault is it when we agree to lesser services and the project doesn’t go as planned? Just because the structure can be eight feet apart, doesn't mean that the geometry will look correct when it's finished. Or that removing one window will save you $500, but now every time you drive into your driveway you see the two eyes and mouth because the front of your home looks like the painting "The Scream" by Edvard Munch. It's like trying to run a project, without a project manager. Just because it might save you a little money, doesn't mean it's always a good option.  The architect has spent hours getting the proportions just right, so if you need to save money, or make a change, they need to be able to evaluate how that change will affect all other parts of the structure. Not only does the architect design buildings, we manage the process from the beginning site analysis through commissioning.  You need the architect to be fully engaged through the entire process, so let us tell you why you need us!  

Why Fiberglass Insulation Sucks!

SprayfoamRoofWhile I was teaching the last couple of days, several issues came up and one of them was fiberglass insulation.  I tell my students at the beginning of the semester that I hate fiberglass insulation and very rarely use it, but that’s not really fair or true.  Used in the right context, fiberglass insulation can be just fine. However, I find all too often that fiberglass is used in the wrong way.  It really is not great as wall or attic insulation and it’s often found in basement ceilings where it’s installed up side down.  So I thought it would be good to discuss when and where to use fiberglass insulation, and why it doesn’t work in all locations.First, fiberglass insulation works by trapping the air in between the fiberglass fibers. So fiberglass insulation is really only effective when there is absolutely no air movement where it is installed.  Air movement through the insulation removes those trapped pockets of air and essentially makes it a filter. And no matter how tight you build a building, you are still going to have air leakage in some areas. That’s why; when you pull it out of the box sill in your basement it looks black.  That’s just the air infiltration from the box sill being filtered through your insulation and making it useless, since it is no longer trapping air pockets within its web of fibers.The box sill or band joist, is often one of the leakiest locations in a home, and therefore one of the worst places to install fiberglass insulation.  Fiberglass insulation rarely works well in the wall cavity because your siding breathes and tongue and grove wall surfaces are not airtight.  Wall cavities can also be open to the box sill below.  If you follow the principle that hot air rises, then that air is always going to be traveling up through your wall cavities, taking warm air with it, and cooling off the sheetrock on the inside.  It also performs poorly in the attic due to wind washing.  Wind washing is the effect that happens when the air enters your attic through your soffit venting and blows through the insulation.  Contractors install proper vents to try to direct the air above the insulation.  But I have been in many homes that have improperly sized or installed proper vents, or none at all.  Not installing the proper vents and insulation dam causes the wind to be pulled through the fiberglass insulation, again releasing the trapped air molecules in the fiberglass and making the insulation less effective.If you have a heating system, plumbing, or laundry in your basement then the insulation does not belong in your basement ceiling.  People argue with me all the time that they do that just to make the floors warmer; well that’s not a good enough reason.  You’ll be thanking me when you don’t have frozen pipes and the excess heat from your boiler can rise to the floors above.  If you have any of the things I mentioned in your basement then the thermal boundary of your space is the wall.  If you have rubble stone or granite the best wall insulation is spray foam.  If you have smooth concrete then the best insulation is rigid insulation.  If you live in Maine the rigid insulation needs to be Thermax insulation approved by the Maine State Fire Marshal’s office for use without covering.  Otherwise, you have to cover your rigid insulation with a 15 minute thermal barrier – which is 1/2” Sheetrock or ¾” OSB.  You are also required to cover your spray foam insulation with a thermal barrier that any spray foam installer can spray on as part of the insulation process.But I digress, we were talking about fiberglass, and why it seems to always be installed in the wrong place or the wrong way.  The Kraft paper side of the fiberglass always needs to be to the warm side of the structure.  So in Maine, it needs to face to the inside.  Fiberglass is only as good as it is installed.  The Kraft paper should be face stapled to the studs, not side stapled which compresses the insulation.  The fiberglass insulation should be cut and fit around electrical wiring so that it is not compressed behind the wire.  And it needs to fit fully into the cavity, touching both sides of the studs, as well as, the top and bottom.  All too often insulation is installed by the lowest paid guy on the job site.  It’s one of the most critical pieces to get right, but it’s nasty work and therefore done by the new guy.  In basements, the Kraft paper side needs to be up against the warm floor above, not stapled to the floor joists below– I know this is easier to install, but it’s putting the vapor barrier on the wrong side.  And in the North East we strap our ceilings, which makes fiberglass insulation the worst type of insulation to use in your attic.  The ¾” strapping leaves a ¾” gap between the ceiling sheetrock and the insulation above allowing air to carry the heat away from the sheetrock without the protection of the insulation.  That moving air also reduces the effectiveness of the insulation above.  So make sure that your insulation is in full contact with your sheetrock ceiling.  The proper way to solve this problem without adding a lot of extra expense is to pick up your fiberglass insulation, blow in 3 inches of cellulose, cut the vapor barrier on your existing fiberglass insulation and lay it back down on top of the cellulose.  If you need more insulation to meet the code minimum, blow an additional couple of inches of cellulose over the top of your fiberglass insulation to make a fiberglass sandwich.  The density of the cellulose minimizes the airflow through the insulation and makes the fiberglass more effective.Where would I use fiberglass?  Well it makes a great sound barrier, so I would use it around the master bedroom and around bathrooms to reduce noise levels.  I would also use fiberglass insulation in conjunction with rigid insulation in basements if you were going to finish a basement, because it does not hold water, and basements can be moist.  It has its place, in a completely sealed envelope it can add a lot of r-value to a system, but it needs to be installed correctly and in the right location. 

Heating Season Again

As of September 15th it's heating season again. If you live in New England, or more specifically, Maine, then you know that means it's time to fill your tank with Fuel Oil again.  It's a sad reality for me, that Natural Gas lines are less then .25 miles down the street, but just out of my reach.  Our street was paved last year, and city ordinances require that you can not rip up the pavement for a certain number of years.I knew the city was going to pave our street, so prior to paving, I reached out to the natural gas company in our area.  I was told that I would need to petition my neighbors and convince several of them on our street to switch to natural gas.  If you are a homeowner or building owner, you know that replacing your heating system is a costly upgrade and very few people are willing to do so.  Sure i'm an Energy Consultant and I could have run the numbers for all of my neighbors on the savings and payback for moving to natural gas - but let's be honest, who has that kind of time!So instead I leave you with a few nuggets of wisdom that I use when I do all of my residential energy audits.1. Have an Energy Audit done on your home.  A great energy auditor is trained to understand your home as a system and figure out where air leaks are coming from and what the best solution for your individual home is.  Even homes built from the exact same plans will be totally different, so make sure you hire the right energy auditor, that will give you an assessment on your unique home.2. Air sealing is the cheapest and nets you the most savings for the dollars you put in.  Everyone has heard the term "hot air rises" so start in your attic - seal around anything that protrudes through your ceiling and into your attic space.  Grab a tube of caulking and a can of 1-part spray foam from your local hardware store and make that first adventure into your attic.  Air sealing isn't rocket science - but be very careful to stand on the joists and not fall through the ceiling.  If you're not agile, or willing to climb around in your attic on a saturday afternoon there are plenty of hungry contractors out there willing to do the job!3. Add insulation - adding insulation to your attic is the best place to start because it is usually easy to get to.  If you haven't done the air sealing mentioned in number 2, don't even bother with the insulation - you'll just be wasting your money.3. After you've done all the insulation and air sealing - then consider upgrading your heating system.  You ask - why do I leave this for last - I have an old heating system and it will save me the money I need to add the air sealing and insulation.  Well that might be true, but once you add the air sealing and insulation, your heating system will be oversized and you'll lose money from short cycling.So this heating season - as the leaves begin to fall and we start thinking about winter again - keep in mind - that a good energy audit can tell you a lot about your home, and save you money all year long.