Net Zero Home Design

Popular Culture Connection: Energy Modeling

We use REMRate to do energy modeling on our non-passive house projects and in order to submit projects for HERS ratings and other certifications we are part of the Resnet community.  We love to hear about energy modeling in the news, so here are a few things:

  1. We would love to say congratulations to our friends over at Rochester Passive House for winning a very prestigious accomplishment. They won the 2017 RESNET Cross Border Challenge. They had the lowest HERS score without on site power generation anywhere in the US or Canada built in 2016. That includes over 200,000 homes that were rated through the HERS Program. Congratulations! If you're local to Rochester, they are having an open house on April 1st. Go check out the house, it's beautiful and impressive!
  2. We finally got our HERS Rating on the house in Cumberland! It's designed as a net-zero home, but it was built with 2 rows of solar panels for onsite power generation. It can accommodate 3 rows and would need a few more panels to be net-zero as built. So we rated it as built and it came in with a HERS score of 10! We've been monitoring the data for a year and we can confirm that it performs as the energy model says it will!
  3. We are thrilled to hear that there is legislation moving forward to help with Energy Efficient Mortgages.We are even very excited that Senator Susan Collins is an early supporter of the BiPartisan Energy Efficiency Legislation Introduced in the US Senate. Check out more on the RESNET Blog

Building Strategies: Using Energy Modeling to Measure Home Performance

When designing a new home, what qualifies as important to you? How about lots of natural light, well regulated heating & cooling for comfort? What if you had all of that plus reduced utility bills? When you're designing a home, wouldn't it be great if there was a way to evaluate how much it would cost to live in it after it was built? If you said yes, then you're on the right track. Here at Mottram Architecture we use energy modeling on all of our homes. This helps us to evaluate what the best options are for our clients budget now, and for the life of the home.With the exception of the solar panels you will see on a net zero home, at first glance you might not realize it is anything other than another beautiful home. What makes this type of home so special is often the unseen features. If you are planning to build a home anyway, why not make some early decisions that can make your home smarter, cheaper to live in and more comfortable. With energy modeling, we can evaluate trade off's. What we mean by trade off, for example, would be more insulation for less heating system. The savings for adding more insulation will not eliminate a heating system, but it can make the heating system smaller. So even though the insulation cost more to install, a smaller heating system will cost less, and as costs rise with the economy, a smaller heating system will cost less to operate. For this reason, a great building envelop with the right type and amount of insulation, typically pays for itself in no time.A common misconception is the average consumer cannot afford to build to the standards of net zero, however this is a feasible goal for anyone ready to build!  It’s possible to keep costs comparable to conventional construction simply by planning ahead, and that’s what we do best here at Mottram Architecture.5 Reason Why Using Energy Modeling to Evaluate Home Performance is So Important:

  1. Using an energy model can help to evaluate the cost difference in using double pane vs triple pane windows. Although using triple pane windows has other advantages with thermal comfort and moisture mitigation, sometimes the increased costs associated with high performance windows can keep you from proceeding towards net zero.
  2. Energy modeling also allows evaluation of different wall systems. We always strive to get R-40 minimum in the walls and R-60 in the ceiling. However, there are a number of ways to get to that level of insulation. Different contractors and different sites make certain materials easier to work with or cheaper to install. Without reducing the overall effectiveness of the building envelop, energy modeling can take into account how everything works as a whole.
  3. When building an efficient home, there are several programs that you can take advantage one. One of the most valuable programs for a homeowner can be the Energy Efficient Mortgage. This allows a homebuyer to extend the amount of money they can borrow by offsetting the extra money in the mortgage payments with lower monthly bills. Using an energy modeling software allows Mottram Architecture to evaluate the cost of better building practices against the monthly savings to the homeowner.
  4. When building a net zero home, it's important to evaluate how you get to zero energy. There are a number of programs you can participate in, but energy modeling is the key to having a great design that will perform well once constructed. Energy modeling takes into account how the building uses energy and how much energy the building needs to produce to hit the zero energy target.
  5. Here at Mottram Architecture we believe in integrated design. That's one of the reasons we do an energy model on each home we design. We've learned a lot about high performance building over the years. Everything from indoor air quality to building construction techniques. The reason why energy modeling is so important to us, is it shows us where there is a weakness in our design. Are there too many windows on the wrong side of the house. Is there enough shading to prevent overheating. It may sound silly in a heating climate, but in the summer time it's just as important to stay cool inside your home. But maybe most importantly, what is it going to cost to operate this home and how can we make it better.

These are just a few reasons why we do energy modeling at Mottram Architecture. If you're thinking about building a home, it's always a wise idea to know what it's going to cost you to live in it after it is built. Let us help you make the right design decisions, so you not only love your new home, but so your comfortable living there for many years.  

Passive House with Mottram Architecture

Sorry for the lack of updated content over the last couple of weeks! I decided that it was finally time to take the Passive House Course.  I've been teaching sustainable design for several years on top of practicing it here at Mottram Architecture. Although I knew the principles of passive house, and I have done blower door tests on a few local passive house homes, I had yet to take the certification course myself.  Like all great programs, I needed continuing education credits for my HERS certification, so I decided to take the plunge, hence my long absence.  The Certified Passive House Designer course "the German version" was only offered through New York Passive House Academy in NYC! It's a two week course that ends with a 3 hour exam.  So I spent a considerable amount of time traveling back and forth between NYC and my office over the course of May.  So thank you for your patience and here's some of what I learned.What passive house means to me is a lot of calculations, scientific data, cool but complicated construction details, and lots of integration to make sure all the parts work together. But what should passive house mean to you? Comfortable, durable, and healthy homes. Passive House, in an ideal scenario, would be able to heat a home with a small amount of electric heat added to the ventilation system. This may be possible in Germany, but unfortunately it's not quite possible here in New England. So some adjustments are made for longer, harsher winters, and higher humidity summers. I could list all the program requirements, but I think instead I'll give you the reasons why this is the direction we feel the building community should move.Targeting 70-80% reduction in energy demand in homes is great. It means building them tighter, smarter, with better insulation and fewer moving parts.  We are trying to simplify the usability of the systems.  I don't mean building smaller, in fact, in the passive house program, it's actually harder to achieve the standards with smaller homes. What I mean by simplify is the elimination of large and complicated heating systems. A better air quality system that doesn't account for fresh air being drawn in from any crack or crevice in the building envelop. And most importantly, understanding human comfort and keeping the system balanced to those comfort levels.Everyone can understand the value of a dollar + inflation, but the added benefit to reaching passive house targets is comfort. I recently sat down with someone who mentioned that a few years ago they built a new home. After moving in they discovered, that although it was beautiful, it had all the right finishes, it was terrible to live in.  They felt somewhat jaded that they spent all this money to build a wonderful home and had to deal with drafty construction and discomfort in their home. Building a home will likely be the most expensive personal purchase you make in your lifetime. Getting it right the first time can be hard.

  1. Thick Insulation
  2. Air-tightness
  3. Prevention of moisture migration
  4. Optimize the window areas and sizes
  5. A reliable, steady supply of fresh air

Thick Insulation: I can't stress enough that when you build a home you should not skimp on the insulation. This is the most difficult thing to change after a home is finished. It also seems to be the first thing on the chopping block when budgets get tight. Resist the urge to change your insulation package. Not all insulation is created equal and changing the insulation package could be the difference between you loving your home and not being able to stand it. We have a range of temperature in which we are comfortable. When insulation is poorly installed, is used in the wrong application, or gets cut, the ability to keep the wall temperature warm in the winter and cool in the summer suffers. You can understand that radiators radiate heat into the space. Well the same is true in the opposite. If the wall is cold, you will radiate heat to the wall. Losing body heat makes you feel cooler and can often be confused with drafts. Our thermal comfort is directly affected by the surface temperatures around us. So poor insulation, or not enough insulation, causes us to feel uncomfortable in our homes. And on the plus side, the more insulation you have to reduce heat transfer, the less money you'll spend to keep your home warm.Air tightness: Houses do not need to breath. I repeat, houses do not need to breath. It is incredibly important to make sure that air moves through your home where you want and when you want. It's critically important to control moisture inside the house, along with other toxins that are often found in our building materials, the products we use, and the smells from what we cook. Outdoor air is necessary for healthy living, but people need to breath, not buildings. Drawing air though the building construction can lead to other more serious problems like the collection of moisture within walls. Air infiltration is also an extreme source of heat loss. Every time air leave your home, it's replaced by air from somewhere else (outside, the attic, walls, basement etc). In the wintertime, you have to re-heat every cubic volume of air that escapes. We seem to forget that the draft isn't just letting cold air in, it's letting warm air out, and that's costing you money.Prevention of moisture migration: As you can see, air tightness and moisture migration are tied very closely together. We will always have moisture within our homes. When we breath we respire moisture. When we cook we put moisture in the air. When we supply fresh air it comes with humidity from outside. Controlling the flow of that moisture, and exhausting it to the exterior, is important. When we have cold surfaces, the moisture in the air will deposit on the surface and can grow mold.  When we have leaky buildings, the moisture in the air can be pushed into the wall cavities and create condensation and rot. When hot air rises and is able to escape into our attics it can condense on the inside and make us think we have roof leaks. When a hole is drilled for a chimney and not air sealed it can "rain" indoors. Controlling the moisture is so critically important.Optimum Windows: We no longer want to live like cavemen. We want bright airy beautiful windows that take advantage of the view, let in the sunlight for light and warmth, and allow us to feel like we are outdoors without the harsh conditions. But when it comes to windows, the public is sadly mis-informed and the US is lagging behind it's German friends. It's actually cheaper to buy a triple pane window in Germany than it is to buy a double pane window. They have understood that an additional layer of glass keeps the surface temperature high enough to reduce thermal discomfort and condensation. When achieving the passive house certification, it's still necessary to buy windows from Europe to meet the requirements. Tested for air infiltration (drafts), thermal bridging (component parts), and overall U-value, we are still waiting for US Manufacturers to meet all these standards. I'm not saying it's not possible, I'm simply stating that no US manufacturers are currently approved by the standard to meet all the requirements. However, when I say the public is misinformed I mean that doing a window replacement will not save you money in your home. It's not as simple as new windows, the true value and savings is in how they are installed. Passive house takes great care to monitor both the window itself and how it is installed. Most replacement window projects that see vast savings come from air sealing during the installation, not the window itself. The major difference in triple pane windows is the thermal comfort and reduction of condensation which cannot be attributed to performance, but can be counted in comfort.Fresh Air: I mentioned previously that houses do not need to breath, but people do, and this is critically important.  When we first started tightening our homes to improve efficiency, we didn't know that fresh air was necessary.  We created what many call "sick building syndrome". We had mold and contamination issues that gave building science a bad name.  We have since discovered that there is a ratio of fresh air needed, per person, to have healthy indoor air. If you took note above, air isn't exactly "fresh" if you don't control where it comes from. Having leaky drafty buildings means high heat loss, but it also means the "fresh air" for the home may come from your wet basement, your dusty attic (and let's all admit we've seen a critter or two up there), or through dried out dirty cracks in our building envelope. With passive house, not only are you supplying fresh air from an intake that isn't positioned in the attic or next to the dumpster, but you're supplying it where you need it most. Most people work outside of the home, so when we are home we spend a majority of that time sleeping in our bedrooms. By providing fresh air to the bedrooms we can improve the quality of the space we live. We are also pre-heating the air so it is not introduced to the space at outdoor temperature. (Negative 15 in Maine in February) and capturing energy by not having to heat the incoming air. The ventilation system also extracts air from places that are high in moisture (kitchens & baths). In an ideal scenario, this will be the one piece of equipment you need in your home, and it should be simple to use and operate.If you're interested in the more detailed scientific data behind passive house, don't hesitate to reach out.  If you're a passive house consultant, we'd love to connect with you! Here at MArch, we think the constant pursuit and sharing of knowledge is beneficial to everyone! We'd love to hear from you!